
PHPoC System Function > Overview > What is system function?

2016-12-27 Sollae Systems page 1 of 18

Overview

What is system() function?

The system() is an internal function to execute system related commands.

The commands could be removed or added without any notice.

PHPoC System Function > Overview > Command format

2016-12-27 Sollae Systems page 2 of 18

Command Format

The format of the system() function is as follows:

string system(string $command_string[, string arg1, string arg2, ...]);

The system function returns a string after operation.

Format 1: only a command string without parameter

The followings are the examples which have a command string without any parameter.

<?php
system("php main.php"); // Run main.php
?>

<?php
system("php -d 3 main.php"); // Run main.php (restart delay: 3 seconds)
?>

<?php
// Run main.php (CPU time: 500us, restart delay: 3 seconds)
system("php -t 500 -d 3 main.php");
?>

Format 2: command with parameter(s)

The words starting with '%' followed by a number in the command string are replaced by
parameters. This format is useful when a command includes any space or control character. The
followings are the examples which have a command string with parameters.

<?php
$script = "main.php";
system("php %1",$script); // Run main.php
?>

<?php
$delay = "3";
$script = "main.php";

PHPoC System Function > Overview > Command format

2016-12-27 Sollae Systems page 3 of 18

system("php -d %1 %2", $delay, $script); // Run main.php (restart delay: 3 seconds)
?>

<?php
$php_id = "0";
$cpu_time = "500";
$delay = "3";
$script = "main.php";
// Run main.php (CPU time: 500us, restart delay: 3 seconds)
system("php -t %2 -d %3 %4", $php_id, $cpu_time, $delay, $script);
?>

PHPoC System Function > Control and Information Commands > uname command

2016-12-27 Sollae Systems page 4 of 18

Control and Information Commands

uname command

This command returns PHPoC version, processor information, and hardware information. It requires a
parameter string starting with '-' and supports multiple parameters with a parameter character.
Example: system("uname -sv");

Parameter Description
s PHPoC engine name
v PHPoC engine version
p Processor information
i Hardware platform information

The following is an example of the uname command.

<?php
// when the product is PBH-101
echo system("uname -s"), "\r\n"; // OUTPUT: PHPoC
echo system("uname -v"), "\r\n"; // OUTPUT: 1.0.0
echo system("uname -i"), "\r\n"; // OUTPUT: PBH-101
echo system("uname -p"), "\r\n"; // STM32F407 Cortex-M4F 168MHz
echo system("uname -svpi"), "\r\n";
// OUTPUT: PHPoC 1.0.0 STM32F407 Cortex-M4F 168MHz PBH-101
?>

PHPoC System Function > Control and Information Commands > php command

2016-12-27 Sollae Systems page 5 of 18

php command

When the system boots up, the init.php is run in the beginning. User can program the one's code in
the init.php and user can run other file with a "php" system command as well. In addition, user can
adjust the running time per a loop of the task with this command.

The following is the php command format.

string system(“php [-t $cpu_time -d $restart_delay $script_name]”);

This command returns the script name to be run.

Parameter Description

$cpu_time

$cpu_time is CPU running time per a loop of the task. The default value is
500us if it is omitted (range: 10 ~ 10000) If this value is larger, CPU
occupation rate will be higher. But there might be network data losses when
network load is high if this parameter is high.

$restart_delay

The script will be restarted automatically after this parameter time when the
PHP script has been terminated. If this value is 0 the script will not be
restarted. If it is omitted the default value is 5. The unit for this parameter is
second. The script will not be restarted when the PHPoC Board is connected
to the debugger

$script_name

If the $script_name is used for a parameter, this script will be restarted if the
script is terminated.
If it is omitted, the CPU time of the current task will be changed
immediately.

The following example is an example which start a script when the current script is terminated.

system("php test.php"); // run test.php after finishing this script

PHPoC System Function > Control and Information Commands > reboot command

2016-12-27 Sollae Systems page 6 of 18

reboot command

User can restart PHPoC script or the system with the "reboot" command. The format of the reboot
command is followed:

string system(“reboot %1 [ms]”, $target);

The operations of this command are different depending on the $target as follows:

$target Description
$php restarts the PHPoC engine
$sys restarts the product(system)

The [ms] is delay time and its unit is millisecond. If the [ms] is omitted the default value is 100
millisecond. This command returns the delay time.

<?php
echo "Restart PHPoC in 1 second...\r\n";
system("reboot php 1000");

while(1);
?>

PHPoC System Function > Flash Memory Commands > Memory Areas

2016-12-27 Sollae Systems page 7 of 18

Flash Command

The environmental variable area

There is some information which should be kept while system power is off. The flash memory is a
non-volatile memory so it is a very good choice in this case.
There are a system data area for the system and a user data area for user data in the flash memory
of PHPoC.

Data area Description Usage

system data area (/mmap/envs)
the area which values for system
are saved into

network related data,
other system data

user data area (/mmap/envu) the area for user data user data

There is only user data area information in this document. Please refer to other document for the
system data area.

PHPoC System Function > Flash Memory Commands > nvm command

2016-12-27 Sollae Systems page 8 of 18

nvm command

nvm command

To save user data to the flash memory, save the data with a "nvm write" command after getting a
key with a "nvm wkey" command.

system("nvm wkey %1", $target);

After generating a key to be used for the "nvm write" command as a parameter, returns it.

Parameter Description

$target
the area to save into
(envs: system data area, envu: user data area)

system("nvm write envs/envu wkey env");

Saving the data to the flash area with the key which was generated with "nvm wkey".

Parameter Description

envs/envu
envs - system data area
envu - user data area

wkey the key which was returned from the "nvm wkey" command
env data to be saved

After user have saved data to the flash memory user cannot save data in the same area within 2
seconds. And the number of saving operation is limited because of hardware limitation so this
function should be carefully used.

The following is an example which saves "abcdefghij" to the user data area.

<?php
$str = "abcdefghij";

echo "setup /mmap/envu (user non-volatile meory)\r\n";
$wkey = system("nvm wkey envu");
echo "write \$str to /mmap/envu\r\n";
system("nvm write envu $wkey %1", $str); // write $str to /mmap/envu (flash)

echo "open /mmap/envu and read it\r\n";
$pid_envu = pid_open("/mmap/envu"); // open /mmap/envu
$buf = "";
pid_read($pid_envu, $buf, 10); // read /mmap/envu
echo "/mmap/envu : $buf\r\n";

while(1);
?>

PHPoC System Function > Crypto Commands > Encryption/Decryption > rc4 command

2016-12-27 Sollae Systems page 9 of 18

Crypto Commands

Encryption/Decryption

RC4

The RC4 is a stream cipher made by Ron Rivest, which is used in TLS and WEP. Because RC4 is an
symmetric crypto algorithm both encryption and decryption commands are same.

The following is the methods of encryption and decryption in PHPoC.

system("rc4 init %1", $rc4_key);

This command is for initializing PHPoC's RC4 crypto engine. So this command should be executed
before the encryption/decryption. This command returns a context which is used for encryption and
decryption operation.

Parameter Description
$rc4_key key for the RC4

system("rc4 crypt %1 %2", $rc4, $rc4_text);

The RC4 encryption or decryption is performed with this command. It returns the data which was
encrypted or decrypted.

Parameter Description
$rc4 the context when the crypto engine was initialized
$rc4_text plain text to be encrypted or cipher text to be decrypted

system("rc4 skip %1", $rc4);

This command skips encryption or decryption operation. The skipping operation should be
performed to improve the weakness of the RC4.

Parameter Description
$rc4 the context when the crypto engine was initialized

The following is an example of the RC4 encryption and decryption.

// encryption
$rc4 = system("rc4 init %1", $rc4_key); // initialize
$out = system("rc4 crypt %1 %2", $rc4, $rc4_pt); // encryption

// decryption test
$rc4 = system("rc4 init %1", $rc4_key); // initialize
$out = system("rc4 crypt %1 %2", $rc4, $rc4_ct); // decryption

PHPoC System Function > Crypto Commands > Encryption/Decryption > des command

2016-12-27 Sollae Systems page 10 of 18

DES

The DES(Data Encryption Standard) is a symmetric key algorithm. And the triple DES gives stronger
data security because it performs DES operation 3 times. There are ECB and CBC methods in the
DES.

The following is the ECB data encryption/decryption algorithm.

system("des init ecb/ede3_ecb enc/dec %1", $ecb_key);

This command is for initializing PHPoC's DES crypto engine. So this command should be executed
prior to the encryption/decryption operation. This command returns a context which is used for
encryption and decryption.

Parameter Description

ecb/ede3_ecb
ecb - DES ECB
ede3_ecb - 3DES ECB

enc/dec
enc - encryption
dec - decryption

$ecb_key 64 bits-key to be used during the ECB encryption and decryption

system("des crypt %1 %2", $des, $text);

The DES encryption or decryption is performed with this command. It returns the data which was
encrypted or decrypted.

Parameter Description
$des the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

The following is an example of the ECB-based DES encryption and decryption.

// encryption
$des = system("des init ecb enc %1", $ecb_key); // initialize
$out = system("des crypt %1 %2", $des, $ecb_pt); // encryption

// decryption
$des = system("des init ecb dec %1", $ecb_key); // initialize
$out = system("des crypt %1 %2", $des, $ecb_ct); // decryption

The following is an example of the ECB-based triple DES encryption and decryption.

// encryption
$des = system("des init ede3_ecb enc %1", $ecb_key);
$out = system("des crypt %1 %2", $des, $ecb_pt);

// decryption
$des = system("des init ede3_ecb dec %1", $ecb_key);

PHPoC System Function > Crypto Commands > Encryption/Decryption > des command

2016-12-27 Sollae Systems page 11 of 18

$out = system("des crypt %1 %2", $des, $ecb_ct);

The following is CBC data encryption/decryption algorithm.

system("des init cbc/ede3_cbc enc/dec %1 %2", $cbc_key, $iv);

This command is for initializing PHPoC's DES crypto engine. So this command should be executed
prior to the encryption/decryption operation. This command returns a context which is used for
encryption and decryption.

Parameter Description

cbc/ede3_cbc
cbc - DES CBC
ede3_cbc - 3DES CBC

enc/dec
enc - encryption
dec - decryption

$cbc_key 64 bits-key to be used during the ECB encryption and decryption
$iv 64 bits initialization vector

system("des crypt %1 %2", $des, $text");

The DES encryption or decryption is performed with this command. It returns the data which was
encrypted or decrypted.

Parameter Description
$des the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

The following is an example of the CBC-based DES encryption and decryption.

// encryption
$des = system("des init cbc enc %1 %2", $cbc_key, $cbc_iv); // initialize
$out = system("des crypt %1 %2", $des, $cbc_pt); // encryption

// decryption
$des = system("des init cbc dec %1 %2", $cbc_key, $cbc_iv); // initialize
$out = system("des crypt %1 %2", $des, $cbc_ct); // decryption

PHPoC System Function > Crypto Commands > Encryption/Decryption > aes command

2016-12-27 Sollae Systems page 12 of 18

aes command

The AES(Advanced Encryption Standard) is a widely-used crypto specification made by the NIST.
There are ECB and CBC methods in the AES.

The following is an explanation to encrypt/decrypt data with the ECB.

system("aes init ecb enc/dec %1", $ecb_key);

This command is for initializing PHPoC's AES crypto engine. So this command should be executed
prior to the encryption/decryption. This command returns a context which is used for encryption and
decryption.

Parameter Description

enc/dec
enc - encryption
dec - decryption

$ecb_key the 128/192/256 bits key to be used encryption and decryption

system("aes crypt %1 %2", $aes, $text);

The AES encryption or decryption is performed with this command according to initialization
command. It returns the data which was encrypted or decrypted.

Parameter Description
$aes the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

The following is an explanation to encrypt/decrypt data with the CBC.

system("aes init cbc enc/dec %1 %2", $cbc_key, $iv);

This command is for initializing PHPoC's AES crypto engine. So this command should be executed
prior to the encryption/decryption. This command returns a context which is used for encryption and
decryption.

Parameter Description
$enc/dec enc - encryption / dec - decryption
$cbc_key the 128/192/256 bits key to be used in encryption and decryption
$iv 128 bits initialization vector

system("aes crypt %1 %2", $aes, $text);

The AES encryption or decryption is performed with this command according to initialization
command. It returns the data which was encrypted or decrypted.

Parameter Description
$aes the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

PHPoC System Function > Crypto Commands > Encryption/Decryption > aes command

2016-12-27 Sollae Systems page 13 of 18

The following is an example of the CBC-based AES encryption and decryption.

// encryption
$aes = system("aes init cbc enc %1 %2", $cbc_key, $cbc_iv);
$out = system("aes crypt %1 %2", $aes, $cbc_pt16);

// decryption
$aes = system("aes init cbc dec %1 %2", $cbc_key, $cbc_iv);
$out = system("aes crypt %1 %2", $aes, $cbc_ct16);

PHPoC System Function > Crypto Commands > Encryption/Decryption > seed command

2016-12-27 Sollae Systems page 14 of 18

seed command

The SEED is a widely-used crypto specification in South Korea made by the KISA. There are ECB and
CBC methods in the SEED.

The following is an explanation to encrypt/decrypt data with the ECB.

system("seed init ecb enc/dec %1", $type, $ecb_key);

This command is for initializing PHPoC's SEED crypto engine. So this command should be executed
prior to the encryption/decryption operation. This command returns a context which is used for
encryption and decryption.

Parameter Description

enc/dec
enc - encryption
dec - decryption

$ecb_key the 128/256 bits key to used in encryption and decryption

system("seed crypt %1 %2", $seed, $text);

The SEED encryption or decryption is performed with this command according to the initialization
command. It returns the data which was encrypted or decrypted.

Parameter Description
$seed the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

The following is an explanation to encrypt/decrypt data with the CBC.

system("seed init cbc enc/dec %1 %2", $cbc_key, $iv);

This command is for initializing PHPoC's SEED crypto engine. So this command should be executed
prior to the encryption/decryption. This command returns a context which is used for encryption and
decryption.

Parameter Description

$enc/dec
enc - encryption
dec - decryption

$cbc_key the 128/256 bits key to be used in encryption and decryption
$iv 128 bits initialization vector

system("seed crypt %1 %2", $seed, $text);

The SEED encryption or decryption is performed with this command according to the initialization
command. It returns the data which was encrypted or decrypted.

Parameter Description
$seed the context when the crypto engine was initialized
$text plain text to be encrypted or cipher text to be decrypted

PHPoC System Function > Crypto Commands > Encryption/Decryption > seed command

2016-12-27 Sollae Systems page 15 of 18

The following is an example of the CBC-based SEED encryption and decryption.

// encryption
$seed = system("seed init cbc enc %1 %2", $cbc_key, $cbc_iv);
$out = system("seed crypt %1 %2", $seed, $cbc_pt32);

// decryption
$seed = system("seed init cbc dec %1 %2", $cbc_key, $cbc_iv);
$out = system("seed crypt %1 %2", $seed, $cbc_ct32);

PHPoC System Function > Crypto Commands > Encryption/Decryption > base64 command

2016-12-27 Sollae Systems page 16 of 18

base64 command

The BASE64 is an encryption and decryption algorithm to convert binary data to ASCII, and vice
versa. The BASE64 is used in email and XML. There are lots of alternations according to the usage.
The PHPoC supports 3 types - standard type, URL type, and MIME type.

system("base64 enc/dec %1 [std/mime/url]", $msg);

Parameter Description

enc/dec
dec - encryption
dec - decryption

$msg the plain text to be encrypted or cipher text to be decrypted

std/mime/url

std - standard
mime - MIME
url - URL
The default is standard if it is omitted.

The following is an example of BASE64.

$enc_out = system("base64 enc %1", $msg0);
$dec_out = system("base64 dec %1", $enc_out);

PHPoC System Function > Crypto Commands > Hash > crc command

2016-12-27 Sollae Systems page 17 of 18

Hash

crc command

The crc command computes 8/16/32 bits CRC and its format is followed:

system("crc bits %1 [init div msb/lsb]", $msg);

It returns CRC value after calculating with the parameters.

Parameter Description

bits
8 - 8 bits CRC
16 - 16 bits CRC
32 - 32 bits CRC

$msg the original message to be computed

init
CRC initial value.
If it is omitted the default value is:
8 bits - ff, 16 bits - 1d0f, 32 bits - ffffffff

div
The divisor(polynomial) to be used for CRC calculation.
If it is omitted the default value is:
8 bits - e0, 16 bits - 1021, 32 bits - edb88320

msb/lsb

the CRC calculation order
msb: calculated from the MSB to LSB
lsb: calculated from the LSB to MSB
If it is omitted the default value is:
8 bits - lsb, 16 bits - msb, 32bits - lsb

The following is an example code for each CRC types.

<?php

$string = "123456789";

printf("CRC-16-ANSI : %04x\r\n", (int)system("crc 16 %1 0000 a001 lsb", $string));

printf("CRC-16-Modbus : %04x\r\n", (int)system("crc 16 %1 ffff a001 lsb", $string));

printf("CRC-CCITT FFFF: %04x\r\n", (int)system("crc 16 %1 ffff 1021 msb", $string));

printf("CRC-CCITT 1D0F: %04x\r\n", (int)system("crc 16 %1 1d0f 1021 msb", $string));

printf("CRC-CCITT XModem : %04x\r\n", (int)system("crc 16 %1 0000 1021 msb", $string));

$crc16_out = (int)system("crc 16 123456789 %1 8408 lsb", $string);
$crc16_out = bin2int(int2bin($crc16_out, 2, true), 0, 2);
printf("CRC-CCITT Kermit : %04x\r\n", $crc16_out);

$crc16_out = (int)system("crc 16 123456789 ffff 8408 lsb");
$crc16_out = $crc16_out ^ 0xffff;
printf("CRC-CCITT PPP : %04x\r\n", $crc16_out);

$crc16_out = ~(int)system("crc 16 %1 0000 a6bc lsb", $string);
$crc16_out = bin2int(int2bin($crc16_out, 2, true), 0, 2);

PHPoC System Function > Crypto Commands > Hash > crc command

2016-12-27 Sollae Systems page 18 of 18

printf("CRC-16-DNP : %04x\r\n", $crc16_out);

?>

	Overview
	Command Format
	Control and Information Commands
	php command
	reboot command
	Flash Command
	nvm command
	Crypto Commands
	DES
	aes command
	seed command
	base64 command
	Hash

